M.Sc. Course				se	SC 503P Solid State Physics Laboratory						
Teaching Scheme				eme	Examination Scheme						
L T P C H			Hrs/Week	Theory			Pra	Total Marks			
					MS	ES	IA	LW	LE/Viva		
0	0	4	2	4	0	0	0	50	50	100	

COURSE OBJECTIVES

- To make the students to understand a broad range of experimental techniques and to enable them to demonstrate their ability to use the techniques in conducting scientific experiments and observations.
- To experimentally realize the structural, magnetic, electric, dielectric and ferroelectric behavior of various materials.

List of Experiments:

- 1. Determination of lattice constant and crystal structure of given powder sample using X-ray diffraction method.
- 2. Dynamics of mono and diatomic lattices.
- 3. To determine the dielectric constant of Various materials.
- 4. Investigation of Four probe and two probe resistance measurement and determination of contact resistance.
- 5. Investigation of B-H curve: (i) to determine the value of permeability and coercivity of various materials.
- 6. Study of meissner effect.
- 7. Studies on the Electric Spin Resonance spectrum of the given sample and determination of Landeg factor.
- 8. Investigation of Hall Voltage as a function of current and magnetic field and determination of Hall Coefficient and carrier concentration of the given sample of semiconductor.
- 9. Study of magneto resistance behavior of semiconductor/manganites materials.
- 10. Investigation of ferroelectric behavior.
- 11. Visit of characterization facility of Research institute

COURSE OUTCOMES

After completion of this course students will be able to;

- CO1: analyze the crystal structures by applying crystallographic parameters and determine crystal structure by XRD data.
- CO2: understand the magnetic and dielectic and ferroelectric properties of materials.
- CO3: understand the basic phenomenon of superconductivity.
- CO4: will be able to collect data and revise an experimental procedure iteratively and reflectively
- CO5: Evaluate the process and outcomes of an experiment quantitatively and qualitatively
- CO6: Communicate the process and outcomes of an experiment.

Course Delivery Methods

Lecture by use of boards/LCD projectors/OHP projectors	No
Tutorials/Assignments	No
Seminars	No
Mini projects/Projects	Yes
Laboratory experiments/teaching aids	Yes
Industrial/guest lectures	No
Industrial visits/in-plant training	Yes
Self- learning such as use of NPTEL materials and internets	No
Simulation	No

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment:

Assessment Tool			% Co	ntribution Assessm	J	Maximum Marks		Exam Duration	
Examiantion	Laboratory work		50%			50		Conti	
	Practical / Viva			50%			50	2 hours	
Assessmo	CO1	CO2	соз	CO4	CO5	CO6			

Laboratory work	YES	YES	YES	YES	YES	YES
Practical / Viva	YES	YES	YES	YES	YES	YES

Indirect Assessment:

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping of Course Outcomes onto Program Outcomes

Course Outcome	Programme Outcome					
course outcome	PO1	PO2	PO3	PO4	PO5	
CO1: analyze the crystal structures by applying crystallographic parameters and determine crystal structure by XRD data.	н	Н	н	M	L	
CO2: understand the magnetic and dielectic and ferroelectric properties of materials.	н	н	н	н	н	
CO3: understand the basic phenomenon of superconductivity.	Н	M	Н	M	L	
CO4: will be able to collect data and revise an experimental procedure iteratively and reflectively	н	н	н	н	L	
CO5: Evaluate the process and outcomes of an experiment quantitatively and qualitatively	М	Н	н	н	н	
CO6: Communicate the process and outcomes of an experiment.	L	L	M	Н	Н	